Year: 2020

Improve Operational Safety through Phosgene Leak Detection

Improve Operational Safety through Phosgene Leak Detection

When processes involve extremely toxic or hazardous materials such as hydrofluoric acid, phosgene, isocyanates, etc., safety is paramount. Having a sample interface with built-in leak detection can help save human lives. Consequently, it is recommended that a High Safety Flow Cell be used when monitoring these situations. Constructed out of stainless steel or Hastelloy C276 with Kalrez seals, this flow cell is rated for 250 ºC typical operation at 300 psi. The safety sniffer port provided between o-ring seals allows for a connection to a leak detection system to be used as an indicator of primary seal failure.

For example, plant safety can be improved by monitoring the purity or concentration of phosgene using Guided Wave’s High Safety Flow Cell which is compatible with all Guided Wave analyzers and many other analyzer brands. Built into a Class 300 flange, using welded construction, the High Safety Flow Cell uses double o-ring sealed sapphire windows and a weep or “tattletale” port to self-monitor for o-ring failure. This safety mechanism allows the flow cell to be serviced once the process chemicals are detected in the space between the first and second o-ring seals. Moreover, by installing a High Safety Flow Cell on the input side of the reactor vessel and the recovery line, deviations in the amount of phosgene consumed by the process can be monitored, potentially alerting personnel to a hazardous leak in the facility. Thanks to the dual seals and a sniffer port, polymer manufacturers dealing with hazardous or corrosive samples, such as phosgene, can improve operational safety with the High Safety Flow Cell.

This is also compatible with all makes and models of process FT-NIR analyzers.

QUESTIONS? WE’RE HERE TO HELP.

contact us

Continue reading

How to Choose Pathlength: for APHA Color

How to Choose Pathlength: for APHA Color

The APHA/Platinum-Cobalt color scale is described in ASTM D1209. The ASTM method is an off-line manual laboratory method. The original test design required an observer to compare the color of a product to a known standard, and then judge the “color”. This color scale ranges from 0 to 500. The lowest value of 0 is referred to as water white. A value of 500 is distinctly yellow. (Below illustrates the contrast from 0- 100 range.)

Two Different Pathlengths are Recommended for APHA Applications

If the user needs to measure the whole range, then we recommend a 30 mm pathlength for either an SST Insertion Probe or MultiPurpose Flow Cell. This allows for long enough pathlength to measure the lightly colored samples and but short enough to still collect light for the dark samples. Conversely if the customer is interested in measuring the lightly color samples with scores less than 300 units, we recommend the 50 mm pathlength. The longer pathlength allows better precision for distinguishing between lightly colored samples.

Still Need Help Selecting a Pathlength?

Guided Wave selects a pathlength for the sample interface that provides the best solution from a technical and economic standpoint. Finding the balance between the signal-to-noise of the measurement and cost to manufacture, as well as accessibility for cleaning/maintenance by the user is always Guided Wave’s priority.  For more information contact us.

QUESTIONS? WE’RE HERE TO HELP.

contact us

Continue reading